

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Statistical Analysis of NMR Proton Spin-Lattice Relaxation Rates Measured at Various Pulse Repetition Times

A. Yilmaz^a; M. Tez^b

^a Department of Physics, Faculty of Science, University of Dicle, Diyarbakir, Turkey ^b Department of Mathematics, Faculty of Science, University of Dicle, Diyarbakir, Turkey

To cite this Article Yilmaz, A. and Tez, M.(1995) 'Statistical Analysis of NMR Proton Spin-Lattice Relaxation Rates Measured at Various Pulse Repetition Times', *Spectroscopy Letters*, 28: 3, 359 — 365

To link to this Article: DOI: 10.1080/00387019508009884

URL: <http://dx.doi.org/10.1080/00387019508009884>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

STATISTICAL ANALYSIS OF NMR PROTON SPIN-LATTICE
RELAXATION RATES MEASURED AT VARIOUS
PULSE REPETITION TIMES

*Key Words: NMR T₁, Pulse Repetition Times, Inversion Recovery,
Non-linear estimation*

A.Yilmaz[†] and M.Tez^{}*

[†]*Department of Physics, ^{*}Department of Mathematics, Faculty of Science
University of Dicle, Diyarbakir, Turkey.*

ABSTRACT

In this work, taking into consideration waiting time(WT) in successive automatic measurement, the effect of pulse repetition time(T_R) on spin-lattice relaxation time (T₁) was studied by a FT-NMR spectrometer. Inversion-recovery pulse sequence 180⁰- τ -90⁰(FID)+T_R+WT was successively applied for a set of 10 different τ . T₁ was calculated from non-linear estimation of inversion recovery formula, using partially relaxed recovery signals corresponding to different τ . Holding WT constant, T_R was set at 6 different values, ranging from nearly 6T₁ to 0.7T₁. T₁ measurements were repeated 20 times for each T_R. For comparison T₁ measurements were also repeated by the null method. Data showed that the intensity of recovery signals after total waiting (T_R+WT) has the same value for all T_Rs and comparison of T₁ groups corresponding to these T_Rs indicates no significant difference among T₁ values measured(p>0.2). Keeping T_R+WT>5T₁, to reduce T_R more causes an imperfect signal. The results suggest that WT makes possible the use of a T_R shorter than 5T₁ and saves experimental time.

+To whom correspondence should be addressed.

INTRODUCTION

The most commonly method for measuring nuclear spin-lattice relaxation time (T_1) by fourier transform spectroscopy is the inversion-recovery technique(1). The method is based on the well-known pulse sequence [180° - τ - 90° (FID)+ T_R]_n. A waiting time $T_R > 5T_{1\max}$ is allow to restoration of equilibrium after 90° pulse, where $T_{1\max}$ is the longest longitudinal relaxation time to be measured, τ is delay time after inversion of signal by 180° pulse and n, number of scans. The partially relaxed Free Induction Decays(FIDs) for various τ are collected and then fourier transformed each leading to a partially relaxed spectrum. If we call M_z , the amplitude of a line in the spectrum and M_0 , the corresponding amplitude at thermal equiblibrium, the spin-lattice relaxation time can be deduced from the following equation:

$$M_z = M_0[1-2\exp(-\tau/T_1)] \quad (1)$$

The applicability of this method is limited by its duration which depends on the number of scans, n, and on the pulse repetition time, T_R . This difficulty is particularly stringent for low sensitivity nuclei such as ^{13}C and ^{15}N because these nuclei may have long relaxation times and because extensive time averaging may be required even to obtain a single spectrum. The problem becomes less acute with methods based on 90° pulses, so-called saturation recovery sequences which do not utilise a long T_R . These sequences can be obtained using a burst of 90° pulses(2) or by field inhomogeneity gradients(3). A similar result to eliminate magnetization which causes saturation is more simply obtained by progressive saturation methods(4,5). However, saturation recovery methods entail a loss of dynamic range with respect to inversion-recovery. Therefore, the traditional two-pulse inversion-recovery sequence is modified to save time. The fast and modified fast inversion-recovery sequences are still most widely used for spin-lattice relaxation measurements(6,7), and the studies on experimental time saving in relaxation measurements have still been interesting(8,9).

Diagnostic NMR studies are often based on a set of inversion recovery images in which proton density, Rho and relaxation times constitute the source of con-

trast (10,11). A long T_R causes longer acquisition time which is undesirable for patient examination and for image contrast. Although different techniques are being used to get the relaxation map of tissues(10-13), saving imaging time more will be useful for routine analysis.

In addition to pulse repetition times between pulse sequences, NMR spectrometers use an additional waiting time(WT) for kinetic measurements using time. This is a characteristic of automatic measurement and its duration should change from spectrometer to spectrometer. In the presence of a long WT, the pulse sequence can be written as $180^\circ-\tau-90^\circ(\text{FID})+T_R+WT$. By holding $WT+T_R > 5T_1$, T_R can be reduced. This makes possible the use of a shorter T_R which saves experimental time in ^{13}C relaxation measurements and in MRI. However, T_R must be longer than acquisition time(*acq*) and this can be satisfied by lowering sampling data points(*sampo*) of computer. The lower values of *sampo* lead to imperfect signals. This requires a knowledge on lower limit of T_R when WT is used. To the best of authors, in the presence of a WT, such a limit for T_R and saving time in relaxation measurements by reducing T_R have not been studied so far.

In this work, taking into consideration WT, the signal intensity of magnetization recovery after (T_R+WT) was measured for different T_R and comparison of T_1 groups corresponding to these T_R s was made.

MATERIALS AND METHODS

The water sample was used for spin-lattice relaxation measurements. T_1 measurements were carried out on a JEOL FX- 60Q FT-NMR spectrometer operating at 60MHz for proton and 10-mm o.d. NMR tubes were used. Inversion-recovery pulse sequence $180^\circ-\tau-90^\circ(\text{FID})+T_R+WT$ was successively applied for ten different τ . Using partially relaxed inversion recovery signals corresponding to various τ , T_1 was calculated from non-linear estimation of magnetization recovery formula in Equation 1 by SYSTAT statistical programme (14,15). WT was 30s($>5T_1$) and automatically set by spectrometer, but T_R was set at 6 different values, ranging from nearly $6T_1$ to $0.7T_1$. In this way 6 different T_1 groups, corresponding to different T_R each, were studied. The ex-

periment was repeated 20 times for each group. To satisfy $T_R > acqt$, $acqt$ was lowered by reducing *sampo*. Comparison of different T_1 groups corresponding to different T_R was made by using t-test(16). T_1 was also determined by the null method, using FT signals(17). The intensity of recovery signals after total waiting($T_R + WT$) was measured by using $[180^\circ - 0.01s - 90^\circ(\text{FID})] + T_R + WT + [180^\circ - 0.01s - 90^\circ(\text{FID})]$ pulse sequences, where T_R was altered from nearly $6T_1$ to $0.5T_1$. Probe temperature was maintained at $(20 \pm 0.5)^\circ\text{C}$ by means of a JNM-VT-3C automatic temperature controller unit. The experimental error for T_1 by inversion-recovery was estimated to be about $\pm 0.03\text{s}$.

RESULTS AND DISCUSSION

The intensities of inversion recovery signals for two different series of $[180^\circ - \tau - 90^\circ(\text{FID}) + T_R + WT$ pulse sequence versus τ are shown in Figure 1. Ratio of recovery signal(M_z) after total waiting to M_0 at thermal equilibrium (M_z/M_0), the average of relaxation rates measured by inversion-recovery for each group and the relaxation rates by the null method are shown in Table 1.

Fig.1 shows that the data obtained for both series ($T_R = 20$ and 3.3) fall on the same curve and give just one $1/T_1$. This indicates that the waiting time replaced by the spectrometer provides full recovery of magnetization for $T_R = 3.3$ as in $T_R = 20$. The data in Table 1 confirm Fig.1 for all T_R , where each T_R corresponds to one group. It is seen that all the groups have the same average for $1/T_1$ and comparisons of groups do not give any significant difference ($P > 0.2$). It is also seen that M_z is equal to M_0 for all groups. The results indicate that M_z is fully recovered after total waiting ($T_R + WT$) between pulse sequences so that it can give just one $1/T_1$ for all T_R . However, WT should change from spectrometer to spectrometer. Therefore, the contribution of WT to T_R should be examined carefully .

In the present case, *acqt* and *sampo* for $T_R = 2.2\text{s}$ were 2s and 4000 respectively. Reducing T_R more requires shorter *acqt* in order to satisfy $P_R > acqt$. This was achieved by reducing *sampo*, but smaller values of *sampo* lead to imperfect recovery signals and likely false $1/T_1$. Even if WT has a suitable value (30s) for reducing TR more, the shortest TR was nearly 2.2s for the present case.

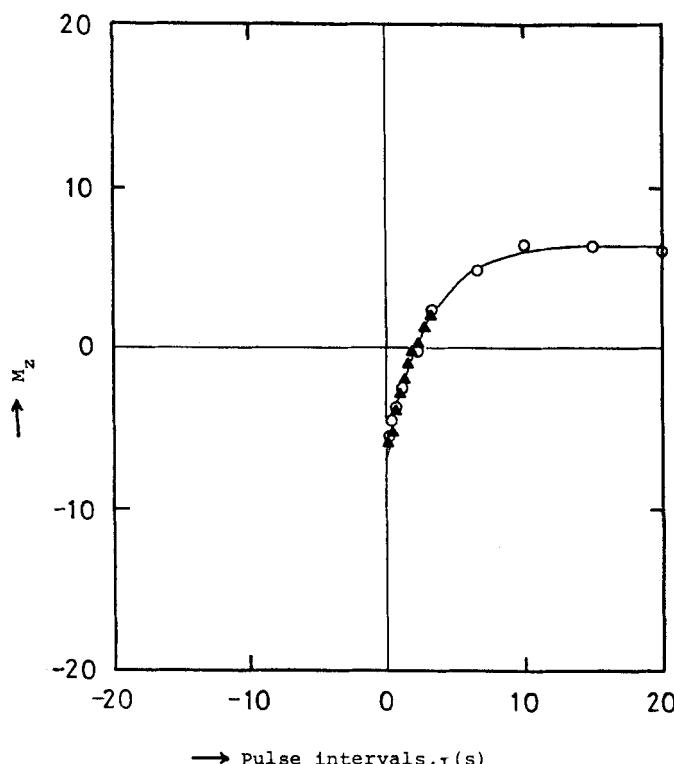


Figure 1: magnetization Recovery curves of various 180° - τ - 90° Pulses for $TR=3.3s$ (triangles) and for $TR=20s$ (circles).

It was shown that elimination of systematic errors in fast inversion-recovery makes possible the use of a short T_R ($\leq 2T_1$) and to extract τ from T_R provides faster inversion recovery sequences for T_1 measurements(6,7). It is also noted that the determination of the number of nonacquisition and dummy pulses is important to minimize the errors in experimentally determined values of T_1 (18). Single-scan fourier transform methods are also designed to save time(19,9). Our data are convenient to these results.

TABLE I
The average of relaxation rates measured by inversion recovery technique, relaxation rate by FT-null method and the ratio of recovery signals after total delay time ($T_R + WT$) to initial magnetization. The relaxation rate is given (1/ms) and T_R in second units.

T_R	$(1/T_1)_{IR}$	$(1/T_1)_{null}$	M/M_0
20	341 ± 30	341	0.99
15	340 ± 15	340	0.99
10	340 ± 15	340	1.00
6.6	341 ± 15	340	1.01
3.3	339 ± 20	340	1.00
2.2	341 ± 15	340	1.00

In conclusion, the present results suggest that T_R can be chosen shorter than $5T_1$ in the presence of a significant WT, and this provides experimental time saving.

REFERENCES

1. Vold R L., Waugh J S., Klein M P., Philips D E. Measurement of spin relaxation in complex systems. *J.Chem.Phys.* 1968; 48: 3831.
2. Markley J L., Horsley W H., Klein M P. Spin-lattice relaxation measurements in slowly relaxing complex spectra. *J.Chem. Phys.* 1971; 55: 3604.
3. McDonald G G., Leigh J S., A new method for measuring longitudinal relaxation times. *J. Magn. Reson.* 1973; 9: 358.
4. Freeman R., Hill H D W.. Fourier transform study of NMR spin-lattice relaxation by progressive saturation. *J.Chem.Phys.* 1971; 54(8): 1367.

5. Wilkins C L., Brunner T.R., Thoennes D J. Experimental Considerations in automated NMR relaxation time measurements by the progressive saturation method. *J.Magn. Reson.* 1975; 17:373.
6. Hanssum H., Maurer W., Rüterjans H. Elimination of systematic errors in fast inversion-recovery spin-lattice relaxation time measurements. *J.Magn. Reson.* 1978; 31:231.
7. Gupta R K., Ferretti J A., Becker E D., Weiss G H. A modified fast inversion-recovery technique for spin-lattice relaxation measurements. *J. Mag. Reson.* 1980; 38:447.
8. Ejchart A., Oleski P., Wróblewski K. Extended inversion-recovery method for spin-lattice relaxation measurements : A key to accurate T1 measurements. *J. Magn. Reson.* 1986; 68:207.
9. Moore J R., Metz K R. Single-scan Simultaneous measurement of NMR spin-lattice and spin-spin relaxation times. *J.Magn. Reson.* 1993; Series A 101: 84.
10. In Den Kleef J J E., Cuppen J J M. RLSQ : T1 ,T2 , and ρ calculations, combining ratios and least squares. *J.Magn. Reson.* 1987;5:513.
11. Bakker G J G., Moerland M A. Simple formulae for the calculations of Rho, T1 and T2 from properly designed diagnostic NMR experiment . *Mag.Reson. Imaging* 1989;7:305.
12. Buxton R B., Fisel C R., Chien D., Brady T J. Signal intensity in fast NMR imaging with short repetition times. *J.Magn. Reson.* 1989; 83: 576.
13. Sperber G O., Ericson A., Fransson A. Hemmingsson A. Fast methods for fitting biexponentials especially applicable to MRI multiecho data. *Phys. Med. Biol.* 1990; 35: 399
14. Wilkinson, leland.SYGRAPH : The system for statistics. Evanston, IL: SYSTAT , Inc., 1990
15. Wilkinson, leland.SYSTAT : The system for graphics, Evanston, IL: SYSTAT Inc., 1990
16. Yılmaz A., Tez M., Değertekin H. Comparison of NMR water proton T1 measurements in Healthy and pathological blood. *Spectroscopy Letters* 1989 ; 22 (7): 925.
17. Yılmaz A., Otludil B., Batun M.S., Ensari Y., Longo R., Dalla Palma L. Determination of serum iron and iron binding capacity by NMR. *Phys.Med.Biol.* 1992; 37(7): 1589
18. Homer J., Roberts J K. Conditions for the driven equilibrium single pulse observation of spin-lattice relaxation times. *J. Mag. Reson.* 1987;74 : 424.
19. Kapiein R., Dukstra K., Tarr C.E. A single-scan fourier transform method for measuring spin-lattice relaxation measurements. *J.Mag.Reson.* 1976; 24: 295.

Date Received: October 5, 1994

Date Accepted: November 11, 1994